You can find most publications (and presentations) at Tim’s Google Scholar page, as well as information on their citation rates. Publications are listed below (click on publications to access the papers), followed by a one-sentence summary of each publication. The three studies most relevant to current work are in bold and press coverage is indicated with a *.

19) Dickson, T.L. and K.L. Gross. 2015. Can the results of biodiversity-ecosystem productivity studies be translated to bioenergy production? PloS ONE, 10:e0135253.

Summary: Agriculturally realistic bioenergy plantings in southern Michigan do not produce more biomass with increased planting diversity, in part because seed cost limits seed density and therefore most species in high diversity plantings are seeded at low seed density, which limits their potential production.

18) Werling, B.P., T.L. Dickson, R. Isaacs, H. Gaines, C. Gratton, K.L. Gross, H. Liere, C.M. Malmstrom, T.D. Meehan, L. Ruan, B.A. Robertson, G.P. Robertson, T.M. Schmidt, A.C. Schrotenboer, T.K. Teal, J.K. Wilson, and D.A. Landis. 2014. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proceedings of the National Academy of Sciences 111:1652-1657.

Summary: Switchgrass and prairie bioenergy plantings are able to support many more bird, bee, insect, plant, and soil microbial species than corn, and this added species diversity provides ecosystem services such as increased predation on agricultural pests and reduced methane output from soils.

*UNO press release

*Omaha Public Radio

*Nebraska Public Television

17) Dickson, T.L., G.G. Mittelbach, H.L. Reynolds, and K.L. Gross. 2014. Height and clonality traits determine plant community responses to fertilization. Ecology 95:2443–2452.

Summary: We experimentally removed clonal species and fertilized in a factorial design, and we found that tall clonal species severely reduce the abundance and richness of all other species whereas tall non-clonal species reduce abundance and richness of other species much less severely.

16) Hallett, L.M., J.S. Hsu, E.E. Cleland, S.L. Collins, T.L. Dickson, E.C. Farrer, L.A. Gherardi, K.L. Gross, R.J. Hobbs, L. Turnbull, and K.N. Suding. 2014. Biotic mechanisms of community stability shift along a precipitation gradient. Ecology 95: 1693-1700.

Summary: Surprisingly, the stability of grassland community composition (and total aboveground biomass production) was not directly related to mean annual precipitation nor the coefficient of variation of annual precipitation, but was instead indirectly related to these variable through their effects on species richness and covariance between species abundances.

15) Dickson, T.L. and K.L. Gross. 2013. Dynamics of plant community responses to long-term fertilization: Changes in functional group abundance drive changes in species richness. Oecologia 173:1513-1520.

Summary: Tall highly-clonal species increase in biomass after fertilization but cause the biomass of all other growth forms to decrease, thereby driving decreases in plant species richness.

14) Cleland, E.E., S.L. Collins, T.L. Dickson, E.C. Farrer, K.L. Gross, L.A. Gherardi, L.M. Hallett, R.J. Hobbs, J.S. Hsu, K.N. Suding, and L. Turnbull. 2013. Sensitivity of grassland plant community composition to spatial versus temporal variation in precipitation. Ecology 94:1687-1696.

Summary: Average turnover of species from year to year in grasslands is quite high (nearly 50% per year), and is especially high in sites with low mean annual precipitation and a high proportion of annual species.

13) Dickson, T.L., J.L. Hopwood, and B.J. Wilsey. 2012. Do priority effects benefit invasive plants more than native plants? An experiment with six grassland species. Biological Invasions 14: 2617-2624.

Summary: Invasive plants species produce much more biomass with a three week head start in germination than do native plants and strongly reduce diversity (lead to plant communities not significantly different from monoculture).

12) Dickson, T.L. and B.L. Foster. 2011. Fertilization decreases plant biodiversity even when light is not limiting. Ecology Letters 14: 380-388.

Summary: Shade limits plant species richness in wetter years but actually increases richness in drought years, and fertilization decreases richness in both wetter (light limiting) and drought (light not limiting) years.

11) Foster, B.L., E.J. Questad, C.D. Collins, C.A. Murphy, T.L. Dickson, and V.H. Smith. 2011. Seed availability constrains plant species sorting along a soil fertility gradient. Journal of Ecology 99: 473-481.

Summary: A larger species pool causes plant communities to diverge more in response to higher fertilization rates.

10) Dickson, T.L. and C.E. Mitchell. 2010. Herbivore and fungal pathogen exclusion affects the seed production of four common grassland species. PLoS ONE 5: e12022.

Summary: Insect removal doubles the seed production of the most common plant in the North American tallgrass prairie, Andropogon gerardii (big bluestem), by reducing consumption of flowers and seed embryos.

9) Dickson, T.L., B.J. Wilsey, R.R. Busby, and D.L. Gebhart. 2010. Melilotus officinalis (yellow sweetclover) causes large changes in community and ecosystem processes in both the presence and absence of a cover crop. Biological Invasions 12: 65-76.

Summary: The presence of the invasive plant, Melilotus officinalis (yellow sweetclover), strongly decreases plant diversity and causes a 5x increase in nitrogen in plant biomass.

8) Dickson, T.L. and W.H. Busby. 2009. Forb species establishment increases with decreased grass seeding density and with increased forb seeding density in a northeast Kansas, USA experimental prairie restoration. Restoration Ecology 17: 597-605.

Summary: Seeding lower rates of tall grasses into prairie restorations allows more forb species to establish and greatly increases forb abundance.

*Tallgrass Prairie Center Newsletter

7) Dickson, T.L. and B.J. Wilsey. 2009. Biodiversity and tallgrass prairie decomposition: the relative importance of species identity, evenness, richness, and micro-topography. Plant Ecology 201: 639-649.

Summary: Higher evenness of plant litter, but not higher richness, generally leads to greater decomposition, but environment and species identity play the largest roles in controlling litter decomposition rates.

6) Dickson, T.L. and B.L. Foster. 2008. The relative importance of the species pool, productivity, and disturbance in regulating grassland plant species richness: a field experiment. Journal of Ecology 96: 937-946.

Summary: Low productivity grasslands are open to new colonists and therefore dispersal and seed addition can increase plant richness, but high productivity grasslands are largely closed to new colonists and these sites must be disturbed if they are to be restored.

5) Dickson, T.L., B.J. Wilsey, R.R. Busby, and D.L. Gebhart. 2008. Plant composition alters vehicular disturbance effects in Kansas, USA. Environmental Management 41: 676-684.

Summary: Native prairie vegetation is more resistant to vehicular disturbance than is vegetation dominated by the introduced cool-season grass, Bromus inermis (smooth brome).

4) Foster, B.L. and T.L. Dickson. 2004. Grassland diversity and productivity: The interplay of resource availability and propagule pools. Ecology 85: 1541-1547.

Summary: Larger species pools increase plant species richness and biomass production; but these responses are contingent upon resource availability, with stronger effects of species pools in irrigated and disturbed sites.  

3) Foster, B.L., T.L. Dickson, C. Murphy, I.S. Karel, and V. Smith. 2004. Propagule pools mediate community assembly and diversity-ecosystem regulation along a grassland productivity gradient. Journal of Ecology 92: 435-449.

Summary: Along a topographic productivity gradient, larger species pools increase plant species richness much more at lower productivity.

2) Foster, B.L., V.H. Smith, T.L. Dickson, and T. Hildebrand. 2002. Invasibility and compositional stability in a grassland community: relationships to diversity and extrinsic factors. Oikos 99: 300-307.

Summary: High diversity sites are more open to new species (more invasible) than low diversity sites, but this relationship is due to both diversity and invasibility being driven by environmental factors rather than direct effects of diversity on invasibility.

1) Dickson, T.L., M. Swift, and H. Shierholz. 2000. A comparison of stream segment and quadrat mussel sampling techniques. BIOS 71: 42-49.

Summary: One square meter quadrats do not provide a good measure of mussel species richness and density under realistic replication, whereas spatially larger samples can provide good measures of these variables (Tim wrote this paper as an undergraduate).